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We are trying to investigate systematically the application of the finite element 
method (FEM) for solving the Schrbdinger equation. The present paper is 
devoted to the calculation of vibrational transition probabilities for the col- 
linear reactive system A + BC (i.e. H + He and their isotopes). The calculations 
are fully two-dimensional and the results are compared with earlier FEM 
calculations and conventional basis set expansion methods using the the 
R-matrix or S-matrix propagation. 

We made extensive analysis of  FEM on the vector-computer Cyber 205 and 
developed a vector code for the efficient use in two dimensions, so that in 
the near future applications even in three dimensions will be possible. 

For the hydrogen exchange reactions we investigated the following isotope 
combinations: (a) H + H 2 ,  b) H + D H ,  D + H D  and H + M u H  (symmetric 
reaction), (c) D + HH, H + DD and Mu + DD (asymmetric reaction). We 
calculated the transition probabilities for up to five open vibrational channels 
and found excellent agreement with known "exact"  values. 
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I. Introduction 

Since the last ten years there has been a rapid development in computer tech- 
nology, especially an increase of core memory and computing power [1]. Super- 
computers are well designed to matrix algebra and therefore fit to the need of 
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quantum chemistry. The solution of the Schr6dinger-equation for electronic 
structure calculations and for the dynamics of atomic and molecular motion is 
nowadays well established by basis set expansion methods [2], which very often 
cannot optimally use the computer architecture [3]. For example, a disadvantage 
of the supercomputer Cyber 205 is that the optimum speed can be reached only 
for a vector length N in the matrix algebra greater than 200 [1, 3]. 

The special features of supercomputers led us to expect that the finite element 
method (FEM) might be a useful tool for solving the Schr6dinger equation in 
few dimensions. Although one has to work with very large matrix systems 
( N  = 1000-100 000) an efficient solution can be reached in case of a large core 
memory. Our code for FEM has been adapted to a Cyber 205. 

The aim of this paper was to use FEM for the investigation of dynamical problems, 
especially the reactive scattering dynamics between atoms and diatomic 
molecules. There has been significant progress in treating molecular collisions 
theoretically [4], but many difficulties still remain to be solved, especially for the 
exact solution of scattering in more than two dimensions. 

In the past three decades the development of numerical FEM procedures for 
solving differential equations has reached a very high level [5]. In continuum 
mechanics FEM has already replaced conventional methods like finite difference 
and variational methods. The use of FEM in different fields of classical mechanics 
is increasing. A similarity between finite difference and finite element methods 
relates to the discretization of the integration area by grid points or into so called 
elements, respectively. There is substantial advantage in FEM, because of flexibil- 
ity of choosing irregular meshes, treatment of special boundary conditions, and 
optimizing the local wavefunctions inside each element. 

First investigations with FEM for solving the Schr6dinger equation started about 
ten years ago: (a) the eigenvalue problem of the H-atom in one dimension [6], 
(b) the vibrational problem of diatomic molecules [7] and (c) the H-atom treated 
in two dimensions [8]. Askar, Cakmak and Rabitz [9] showed how to use FEM 
for reactive scattering and calculated the vibrational transition probabilities for 
v = 0 and 1 for the collinear reaction of H + H2. The same authors use FEM for 
different two-dimensional eigenvalue problems [9c]. In the following years a few 
scattering investigations using FEM have been performed [10]. 

In the last four years FEM gained more and more popularity. Linderberg et al. 
[11] and Kuppermann and Hipes [12] are using this method for solving the 
three-dimensional reactive scattering dynamics of H + H~ and F +  H2 by propagat- 
ing the eigenfunctions in the two hyperspherical angle coordinates. In the case 
of electron-hydrogen collision Christensen-Dalsgaard [13] made considerable 
progress and Levin and Shertzer [14] calculated the eigenvalue problem for the 
Helium ground state in three dimensions. Askar and Rabitz [15] have performed 
the first full 3D rotational inelastic scattering calculation for H +  H2. Within the 
concept of finite elements there are many possibilities of defining local basis 
functions. Normally one uses quadratic or cubic polynomials, but SchulZe and 
Kolb [16] showed in their two-dimensional calculations for the eigenvalues of 
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H~ that quintic polynomials are very efficient and reduce the size of the matrix 
problem considerably. 

In this series of papers we want to investigate systematically how to use FEM 
for solving the Schr6dinger equation. This first paper will be devoted to the 
calculation of vibrational transition probabilities for the reactive system A + BC 
(i.e. H +  H2 and their isotopes in collinear geometry). 

Although the theory of FEM is written up in many textbooks [5], a short overview 
will be given. For more detailed information the reader may be referred to the 
work of Linderberg [ l l c ]  or the paper of Askar et al. [9]. 

The adaption of FEM to the special capability of the Cyber 205 is described in 
Chap. 4, and in Chap. 5 some examples of our calculations for the hydrogen 
isotope reactions will be shown. In further papers we will explain our calculations 
for special systems in more detail. 

2. Formalism 

2.1. General outline 

In the following we will be concerned with mathematical two-dimensional partial 
differential equations. For the time-independent Schr6dinger equation 

( H - E ) r  =0  (1) 

on domain O we use a variational condition which is equivalent to a functional 
equation 

8L = f o  8 r  E ) r  dG  = 0. (2) 

For the two-dimensional case with potential V (x, y) and reduced mass/z, partial 
integration and the Gauss theorem yields: 

6L= V 6 ~ V ~ + 8 r 1 6 2  d O - z - -  
O 

The second part is a line integral over the closed boundary (Dirichlet condition) 
with 6~ = 0, resulting in: 

6L=  ~-~V3r162162162 dO=O. (4) 

The solution of this equation is a stationary solution for a given boundary 
condition. In order to solve the scattering problem one has to solve (4) with 
different choices of boundary conditions; the number of independent different 
boundary conditions corresponds to the number of channels. 

The general idea of FEM is now the following [5b]: 
(a) The domain G is discretized in many subdomains called elements. This can 
be done in many different ways, so that the form of the elements can be fitted 
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optimally to the problem. In two dimensions triangles or quadrilaterals with 
straight or curvilinear boundaries can be used. This kind of discretization can 
be very flexible, but in order to avoid numerical problems, the angles of the 
elements must not be too small. 
(b) On each element the wavefunction q~ is approximated by parametrized 
functions u. We introduce a local approximation of the wavefunction which may 
be optimally adapted to the problem. The simplest choice are polynomials of 
different degrees 

u(x, y) = 3~ c~x~y i. (5) 
i , i  

At the boundary of two elements the function have to fulfill continuity and 
differentiability conditions which depend on the problem. Conforming elements 
are those which fulfill the continuity condition. For further details see [5b]. 
(c) In each element a certain number of grid points, the so called nodes or knots, 
are chosen and the functions u in the element e is expanded as 

P uCe)(x, y) = }~ u~e)N~e)(x, y); ul ~)= u(xi, Yi), (6) 
i=1 

where the "basis" consists of  formfunctions N~ e~ which have to be suitably chosen 
with the properties 

(10 f ~  
N}e)(xJ' YJ)) = fo r j  # i. (7) 

By this procedure the unknown variables to be determined are the u} e), i.e. the 
values of the functions u at the knots, (and in some formulations also the partial 
derivatives) instead of the coefficients c U of (5). 
(d) The integral in Eq. 4 has to be taken over the whole domain G and is a sum 
over all elements 

8L = ~ SEe (8) 
e 

where 8L~ is the integral over the element e with area Ge. 

2.2. Two-dimensional elements 

At present it is not yet clear which form of 2D-elements is the best for our 
problems. In the following we will describe how the integrals for Eq. 4 have to 
be calculated in case of triangular elements with six knots using quadratic 
polynomial functions. In order to get a simple integration formula, we define a 
linear coordinate transformation from any triangle to an isoceles rectangular unit 
triangle TI (see Fig. 1) 

X ~--" X 1 -i t- (X  2 - -  X i )~ j - I  t- ( X  3 --  X l )  77 (9) 

y-- y~+ (y~-y,)~+(y~-yOn 
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Fig. 1. a General triangle TI; 
b unit triangle T O with points 

P,(r n) 
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Because of the transformation the calculation of  integrals for T1 is now changed 
to a "simple area integral" for To. The area element is 

dx dy = J d~: d~7, (10) 

where the Jacobi determinant J is given by 

= Ox Oyl 

J 0-~ ~ = ( x 2 - x , ) ( y 3 - Y l ) - ( x 3 - x l ) ( y 2 - y l ) = 2 G ~ .  (11) 
Ox Oy I 

Partial derivatives of  the function u can be expressed by means of  the chain rule 
as  

Ux = ue~x + unTb, 

with 

(12) 

Y3 - Y l  Y 2 - Y l  ~x = , ~x = - - -  
J J 

X 3 -- X 1 X2 -- X 1 
~y-- - j ' ~y = j 

(13) 

For the numerical work with formfunctions and for formal illustration it's also 
useful to use "natural  triangle coordinates" ffi, which are defined by (Fig. 2). 

q, 

Fig. 2. Natural coordinates in unit triangle with points /5 i ~001  t=0  ~010)~- 

(~, ~2, ~3) 7" ~3 
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~1= 1--~=--~ 

~2 = ~; ~1"~- ~'2"[- ~'3 ~--- 1. (14) 

~3 = 97 

In case of a quadratic function the coordinates ffi of the six knots are given by: 

P,(1, 0, 0);/92(0, 1, 0); P3(0, 0, 1); 
11 , , ( 1 5 )  

P4(~, ~, 0); Ps(0, �89 �89 P6(~, 0, ~,). 

All integrals in Eq. 4 are of the general form 

fG I01ff01-~'2 fdGe = 2Ge  f ( r  if2, ~'3) d~"l dff2. (16) 
e 

Since the function u(x, y) are polynomials all integrals are polynomials. This 
also holds for the potential energy (i.e. if the potential energy is expressed by 
polynomials). The general formula of these integrals [5b] reads 

fG rirjrk i[j!k[ e Slb2S3 dGe - (i+j+k+2)[ 2Ge. (17) 

The quadratic function u(e)(x,y) (Eq. (6)) is expressed by the values u~ (e = 
element, 1 = number  of knot) 

6 u(e)(x~, Y) = u(e)(~',, if2, if3) = E ule)N,(~l, ~2, if3)" (18)  
l=l 

The formfunctions as used in Eq. (6) may be expressed in terms of ~i [5b]: 

N1(~1, if2, ~3) = ~1(2~1-  1) 

N~(~,, r C~) = ~(2~2 1) 

N3(~, ,  ~2, ~3) -= ff3(2~'3 - 1) 
(19) 

N 4 ( ~ ,  ~2, C~) = 4~,r 

N~(r ~':, if3) = 4 ~ ' ~  

N6(~1, ~'2, ~3) = 4~,ff3. 

A quadratic ansatz (Eq. (5)) has been used in the present calculation (see Sect. 
5). The usefulness of higher degree polynomials will be discussed in a subsequent 
paper [17]. 

2.3. Matrix elements for the Schr6dinger equation 

For the calculation of the matrix element in Eq. 4 we express 9, 8q and the 
potential energy V(x, y) by formfunctions Ni(;1, ;2, ;3)- Because the expansion 
leads to matrices (6 x 6 for a quadratic polynomial) we express them in the bra-ket 
notation [9] 

=(NI,/% 

OX q~(e) , 

V(x, y) = (N] v(e)), v~")= (W), W),..., W)). 

(20) 
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In case of  a nonlinear coordinate transformation the kinetic energy operator 
includes coordinate dependent  prefactors f ( x ,  y). Then these may be approxi- 
mated by the polynomial  expansion. As mentioned above the potential energy 
is also approximated by a polynomial where the exact values V~ e) are given at 
the knots i. The contributions of  each element to the whole domain G may be 
written in the following form: 

aLe = (a,p e) I H e)- ES<e> I,p%, (21) 
with S and H matrices 

n (e)= T (e) + V (e) (22) 

[ IN>(v(e>fN><NI dG . 
J G~ 

These are all 6 • 6 matrices. 

Summing up these matrices a matrix of  the size of  the whole number  of  grid 
points N is build up. The final N • N matrix equation to be solved is 

H~b = ESd). (24) 

For asymptotic boundary conditions in scattering problems, one has to treat a 
linear equation with inhomogenity F and continuous scattering energy E 

(H'-  ES')+'= F (25) 
instead of the eigenvalue equation (24). 

Finally we want to comment  on the explicit calculation of matrix elements. The 
kinetic energy operator contains terms like 

, oy, f ( x ,  y) �9 , etc. 

One first transforms to the natural coordinates, for example 

ON 30f f l  ON 
(26) - -  7 ,  

N~ - Ox l=l Ox O~l 

Each matrix element T~j consists of  terms of the type 

f ( N x N x + ' "  ") dGe (27) T i j  ~ - i j 

Ge  

where the N ' s  are polynomials of  a given degree. The prototype integrals are 
once solved by hand for simple formfunctions. These prototype matrix elements 
are tabulated for T <~), V (e) and S (~) in the paper  of  Askar et al. [9bJ. 

I f  the formfunctions are more complicated or if the kinetic energy includes 
coordinate dependent  prefactors, then it is hardly possible to derive analytical 
formulas for all the integrals. For this purpose a small program was developed 
which calculates all prototype matrix elements for given formfunctions and 
operators. 
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Including also curvilinear elements (i.e. for a circle), this kind of procedure 
becomes also very core space or file space consuming. This means that the 
cartesian coordinates have to be expressed by formfunctions N, too 

x = x  T. N((, ~), y=yT .  N((, 7)" (28) 

In this case there may be too many prototype matrix elements, and the best way 
for integration is by some kind of Gaussian integration. In case of a unit triangle 
the general form is [5b] 

f l th(~' ~7) d~ d~? = ~ ~O(~, ~7~)w, (29) 
m 

�9 i = l  

Go 

with integration points ~, ~?i and weights w~. To our knowledge useful integration 
procedures exists only for a triangle with up to 13 grid points which are accurate 
for polynomials up to the ninth degree. Therefore, in Eq. (29) we can use 
formfunctions up to the third degree (note that the potential energy integral 
includes three times the formfunction). For higher order formfunctions and 
especially for curvilinear elements there seems to be so for no useful simple exact 
integration formula. 

3. The calculation of  the scattering matrix S 

For the calculation of the S-matrix and the transition probability P in elastic, 
inelastic and reactive scattering one has to solve the problem in two stages. First 
we have to calculate the stationary wavefunction inside our boundaries and then 
to match the wavefunction at the boundary (logarithmic boundary condition 
[18]) to the exact asymptotic solution of the SchrSdinger equation: 

,=0 \--~] Stnh,K,,(y) exp ( ikxx). (30) 

N~ is the fiumber of open channels, K. are the eigenfunctions of the hamiltonian 
for coordinate y and eigenvalue en. The wavevector is ki = ( 2 / x [ E -  ei]) 1/2 and 
E is the scattering energy, hi describes whether the channel is open or closed 
(ht = 1 or 0, resp.). The transition probability is 

P,. = [St,[ e. (37) 

The current conservation requires 

]St,,I 2 = 1. (32) 
n 

The matching procedure has been described by many authors, so we give only 
a brief survey. Our calculated stationary wavefunctions q~ with special boundary 
condition a can be asymptotically written as 

M 

~p~ = Y~ (A~n cos (k,~)+B~, sin (k.~))K.(~) (33) 
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and have to be compared with Eq. (30). ~:, ~7 are the internal orthogonal coordin- 
ates. ~p~ is a linear combination of M asymptotic vibrational functions K,(~) at 
the boundaries. The unknown translational part with coefficients A~, and Ban 
has to be determined and the coefficients are given as 

B~,  = ( K ,  O P ~ ; k  ' (34) 

o ~ : /  ~ 

at the boundary ~: = 0 [9b]. 

The complex S-matrix results from 

S = h Z * - ~ Z h  (35) 

with 

1 A Z,~ n : ~( ,~,, -- iB,~n)kl,/2. (36) 

The matrix elements S o. or P0 describe the probability of transition from state i 
to state j. The h-matrix (h~ = 30) has been introduced to project out the closed 
channels, thus for a complete solution of the S-matrix we need as many linear 
independent boundary conditions as we have open channels for a given scattering 
energy. 

Concerning the coefficients As, we use the orthonormality of the eigenfunctions 
{t%}, which results into As, = +1, -1  or 0. The B~, are calculated by numerical 
integration of  Eq. (34b). The 0q~/0~: may be determined numerically or according 
to 

O N~ ~ 2o~" (37) 
Ox ~=10x  

4. The structure of the FEM code for the Cyber 205 

Our finite element code is especially adapted to the vector computer Cyber 205. 
For the chosen physical problems we need high accuracy and accordingly many 
grid points (1000 or much more), which results in a long vector length. This 
allows optimal vector coding, keeping the computing time short. Scalar machines 
are useful for small matrices and this may be the reason why FEM has not been 
used too often to answer quantum mechanical questions. 

We have developed a program for different kinds of mathematically two- 
dimensional problems in inelastic and reactive scattering and bound state systems. 
The code was tested by recalculating results for inelastic scattering using different 
model potentials [19] and for reactive scattering by using the L-shape potential 
[20]. In the next section we will discuss in detail our results for the collinear 
hydrogen isotope reactions using the Porter and Karplus surface [21]. 

Before that some insight into the special features of the program and the Cyber 
205 Fortran will be given. The Cyber 205 is a pipeline machine and works 
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efficiently for large vector lengths ( N  >-200). FEM needs simple matrix algebra. 
But because of the short bandwidth (i.e. 100-250, see Table 1) of the large matrices 
(N  = 6000-30 000) it was not easy to vectorize the matrix operations optimally, 
partly because the �89 Mword main memory of the Cyber 205 in Bochum was too 
small. For an improved vectorisation it is advantageous to have a large core 
memory of at least 1.5 Mwords. In this case a Mflop rate between 20-50 can be 
reached. 

The calculation of the integrals (Eq. 16) and the building up of the matrix 
( H - E S )  (Eq. (25)) do not need much time compared to solving the linear 
equations with several boundary conditions. The analysis of the stationary states 
for calculating the transition probability is again negligible in time. The solution 
of the linear equation is achieved by two different methods, (a) the direct Cholesky 
method [5b] and (b) the iterative conjugate gradient method [5b] (see also 
appendix A). In the Cholesky method a decomposition of the matrix A in two 
triangular matrices A = L" L ~ is used. This triangularisation is the time consuming 
step. This step has to be done only once for different boundary conditions F (see 
Eq. (25)). The stationary solution X in A X  = F can be obtained easily. Having 
enough information about the energy dependence of the wavefunction one can 
use an iterative method with good starting vectors. 

The special details of the numerical procedures will be published elsewhere [22], 
some important aspects being given in appendix A. For the Cholesky procedure 
we still don't  have the optimum code, because the Cholesky algorithm needs the 
values of the matrix recursively. This complicates vectorisation. The vector length 
is here equal to the half-bandwidth of the matrix A and only for large dimensions 
of A this can be greater than 200. 

The iterative procedure can be vectorized optimally. The vector length can be as 
long as the dimension of A. To keep the number of iterations as small as possible, 
one has to search for efficient convergence procedures. 

T a b l e  1. CPU-t ime (sec) for Cholesky and conjugate gradient methods ( N  = number  
of  grid points, M = half-bandwidth) 

Cholesky a Conjugate gradient b 

N M A B A B 

6201 116 6_7 0.6 0.07 
9751 146 14.l 1.0 0.22 

14 101 176 25.2 1.8 0.32 
19 251 206 44.4 2.9 ().44 
25 201 236 70.4 4.4 0.57 
31 951 266 105.7 6.2 0.72 

a Part A: triangularisation, part B: forward and backward substitution; time includes 
CPU-time for I /O,  too 
b Time for one iteration (A: fastest version, long vector length; B: compact  version, 
very short vector length, not optimized) 
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The calculation of the scattering matrix for different energies needs the hamilton- 
and overlap-matrix (Eqs. (22), (23)) only once. In case of direct solution for each 
scattering energy the decomposition of the matrix ( H -  ES) is solved once, and 
for each boundary condition a stationary solution has to be calculated. Only the 
partitioning of the matrix takes a large amount of computer time (i.e. like the 
inversion of a matrix), the time for the different boundary conditions is then 
negligible. 

Representative CPU-times are given in Table 1. 

5. The isotope reaction H + H2 

5.1. Introduction 

In the last ten to twenty years many methods have been developed for exactly 
solving low dimension (D=  1, 2, 3) scattering problems. In the beginning the 
finite difference method and different forms of close coupling type procedures 
were used. But since the early beginning finite differences could not really compete 
with the today nearly standard methods like conventional R-matrix [23] or 
hyperspherical coordinate methods using S-matrix or R-matrix propagation 
[24-28,41,42]. The test example for all these methods is the collinear H+H2 
reaction. 

With FEM we investigated the H+H2 reaction and their isotopes using the 
Porter-Karplus potential surface [21]. Our aim is to show that FEM can be used 
for different situations with light (L) and heavy (H) atoms: 

(a) symmetric and asymmetric reactions 
(b) small skew angle and large skew angle (i.e. HLH or LHL systems) and 
(c) cases with many open channels. 

The light (L) and heavy (H) atoms in our collinear reactions are H, D, T, Mu. 
Since our final aim is the treatment of 3D scattering, the first step is to solve the 
2D problem in comparatively short time. 

For the solution of the reaction A+ BC ~ AB + C we used mass-weighted coordin- 
ates. Usually the kinetic energy is expressed by the new coordinates Z1 and Z2, 
related to the interparticle distances rAB and r~c: 

Z l  = tAB q- [mc/(ms + mc)]rBc 

Z2 = x/rnBc rBc; 
u m 

m = mA(mB + mc)/(mA+ mB+ me) 

mBc = mBrnc/ (mB + me) 

such that a simple diagonal kinetic energy results 

1 [ 02 02 \ 
T = - - ~ ~ 1 + 0 - ~ 2  ) 
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The introduction of these reduced mass-weighted coordinates results in a potential 
surface with a skew angle a as shown in Fig. 3. Its form explains some dynamical 
aspects (i.e. whether vibrational, rotational or translational energy is important). 
On the other hand the size of the 2D surface can be enlarged by the transformation 
considerably, which may result in numerical difficulties. 

5.2. H + H 2  

In the case of H + H 2  (mE = 1.00797) a is 60 ~ The symmetric potential area was 
discretized into a certain number of finite elements and we increased the number 
of grid points in order to find convergent results. The range for the coordinates 
ZI and Z2 is given by (see Fig. 3) Z, ~ 1.5-7.0ao, Z2 ~ 0.6-5.5ao. This range of 
Z1 and Z2 corresponds to rH2~0.5-6.0a0. The asymptotic part for large Z1 
corresponds to Z2 ~ 0.6-2.4ao. 

The boundary values for the asymptotes are the eigenfunctions of the diatomic 
Morse oscillator (H2 [21]: Dr = 4.7466 eV, Re = 1.40083ao, 13 = 1.04435ao). 

In Fig. 4 we show the reaction probabilities for H + H2 (v = 0)-+ H2 (v '=  0)+ H 
with up to 3 open vibrational channels and compare it with the work of R~Smelt 
[27] and with other close coupling type results [24-38]. As can be seen our results 
exactly agree with the values from the literature. 

The calculations in Fig. 4 were done for K = 5000 finite elements and N = 10 251 
grid points (this number of elements has been proved to give convergent results 
as reported below). Although it is possible to use the time saving Richardson 
extrapolation [39] in FEM, it was not utilized here. 

5 

Z2[ao] 

3 
3.0eV 

i 0.3eV 

I 2 3 ~ 5 6 7 

z taoj 
Fig. 3. The Porter-Karplus (PK) surface [21] plotted in mass weighted coordinates Zl ,  Z2(a0) for 
the collinear reaction H+H2 .  The contours are drawn for E =0.3, 0.975, 1.65, 2.325 and 3 eV. The 
v-shape section is the integration domain for our calculations with skew angle a = 60 ~ The wavefunc- 
tion at the entrance and exit channels are Morse-oscillator solutions, the wavefunction at the remainder 
of the boundary is set to zero 
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~l,0 

preac, t f" ~ 0 . 0  
05. 

o.c - - ~  [ I I I [ I I J 
0.2 0,5 1.0 1.5 

E[eV] 

Fig, 4. T h e  t r a n s i t i o n  probability p ~ c  f o r  t he  c o l l i n e a r  H + H 2 (v  = 0) --> H e ( v '  = 0) + H r e a c t i o n  as 

a function of the total energy E. E is measured relative to the bottom of the reactant potential energy 
well. : results of Rrmelt [27] (agreeing with other literature results [24-38, 41]), O: present results 

In  o rde r  to test the convergence  we ca lcu la ted  the S -mat r ix  at specia l  energies 
for  a different  n u m b e r  o f  grid points .  One resul t  is shown in Table  2. As can be 
seen the convergence  o f  the  t rans i t ion  p robab i l i t y  P is r eached  very ear ly  (Ngr~d--< 
1700), but  the  s ta t ionary  wavefunc t ion  (Op/On)  is still loca l ly  not  correct .  There  
are o ther  systems where  the  convergence  o f  P is much  s lower  and  the convergence  
o f  the correct  phase  o f  the wavefunc t ion  and  o f  the t rans i t ion  p robab i l i t y  are 
c o m p a r a b l e  (e.g. H + M u H ) .  The necessary  accuracy  de pe nds  on the phys ica l  
p r o b l e m  u n d e r  inves t iga t ion  (e.g. H + M u H ,  F + H 2 ) .  Using many  o p e n  states, 
one  na tu ra l ly  has to inc lude  more  po in ts  to descr ibe  the osc i l la t ions  of  the 
e igenfunct ions  accurate ly .  F o r  some systems ( H + M u H ,  F + H 2 )  an increas ing  
n u m b e r  o f  po in ts  in t r ans la t iona l  d i rec t ion  was needed.  H +  H2 i tself  is a very 
s imple  and  easy system, where  one finds no compl ica t ions .  

N o w  our  results  are c o m p a r e d  with a few prev ious  results  in detai l .  R6mel t  [27] 
(see Table  3) used the hype r sphe r i ca l  coo rd ina t e  me thod  inc lud ing  S-mat r ix  
p ropaga t ion .  Acco rd ing  to the convergence  tests the results  are be t te r  than  1%, 
the  difference be tween  the n o n d i a g o n a l  values  P~o~ . . . . .  and  ~ . . . . .  P16' values  i f  o f  the 
o rde r  o f  0.1% or  even smaller .  In  m a n y  cases R6mel ts  results agree with ours to 
wi th in  1%, o therwise  the  results  given here  are p r o b a b l y  more  accurate .  

In  Table  4 we compare  with the work  o f  Rosen tha l  and  G o r d o n  [36] and  of  
Dies t le r  [38] were reac t ion  probab i l i t i e s  for  3 open  v ibra t iona l  channels  are  given. 

Table 2. Test of convergence for H + H  2 with E=0.022au. Com- 
parison of the transition probability p~ao, the integral B~, (a = n = 1, 
Eq. 34) and the value of the normal derivative of &~ (~ = 1, Eq. 37) 
at R e (H2) at the entrance boundary 

Ngri d BH p~ac 
On 

1701 8.91 5.202 0.99917 
3751 7.33 4.331 0.99918 
6601 6.85 4.203 0.99915 

10 251 6,88 4.170 0.99913 



oo
 

T
ab

le
 3

. 
In

el
as

ti
c 

an
d 

re
ac

ti
ve

 c
ol

li
si

on
 p

ro
ba

bi
li

ti
es

 f
or

 H
+

 H
2 

(N
gr

id
 =

 1
02

51
). 

T
he

 v
al

ue
s 

in
 p

ar
en

th
es

es
 a

re
 f

ro
m

 R
6m

el
t 

[2
7]

 

in
 

re
ac

 
E

 (e
v)

 
G

~ 
G

,/
,o

 
e~

'i 
G

; ~
 

Po
l/,

o 
e~

c 

0.
4 

0.
99

81
2 

(0
.9

98
) 

0.
00

18
8 

(0
.0

02
) 

0.
5 

0.
40

83
4 

(0
.4

07
) 

0.
59

16
6 

(0
.5

93
) 

0.
6 

0.
00

07
2 

(0
.0

03
) 

0.
99

92
8 

(0
.9

97
) 

0.
7 

0.
00

86
2 

(0
.0

09
) 

0.
99

13
8 

(0
.9

91
) 

0.
8 

0.
04

67
5 

(0
.0

49
) 

0.
0 

(0
.0

17
) 

1.
0 

(0
.9

65
) 

0.
95

32
5 

(0
.9

41
) 

0.
00

00
1 

(0
.0

04
) 

0.
0 

(0
.0

) 
0.

9 
0.

02
87

9 
(0

.0
31

) 
0.

11
73

4 
(0

.1
20

) 
0.

39
84

6 
(0

.4
09

) 
0.

67
77

4 
(0

.6
76

) 
0.

17
64

2 
(0

.1
77

) 
0.

30
80

7 
(0

.2
99

) 
0.

11
71

0 
0.

17
60

8 
1.

0 
0.

07
47

1 
(0

.0
79

) 
0.

08
63

9 
(0

.0
82

) 
0.

15
94

6 
(0

.1
62

) 
0.

59
86

5 
(0

.5
91

) 
0.

23
92

5 
(0

.2
45

) 
0.

51
39

0 
(0

.5
09

) 
0.

08
70

4 
0.

24
05

9 
1.

1 
0.

14
61

3 
(0

.1
51

) 
0.

13
83

8 
(0

.1
38

) 
0.

14
35

0 
(0

.1
43

) 
0.

38
76

8 
(0

.3
88

) 
0.

32
79

7 
(0

.3
27

) 
0.

39
03

1 
(0

.3
94

) 
0.

13
83

2 
0.

32
77

1 
1.

2 
0.

19
19

6 
(0

.2
00

) 
0.

22
18

3 
(0

.2
19

) 
0.

18
54

1 
(0

.1
83

) 
0.

23
28

4 
(0

.2
34

) 
0.

35
39

0 
(0

.3
53

) 
0.

23
93

9 
(0

.2
49

) 
0.

22
15

0 
0.

35
31

6 
1.

3 
0.

01
71

1 
(0

.0
23

) 
0.

28
56

8 
(0

.2
80

) 
0.

44
91

9 
(0

.4
52

) 
0.

62
45

5 
(0

.6
21

) 
0.

07
16

3 
(0

.0
77

) 
0.

19
26

9 
(0

.1
85

) 
0.

28
52

1 
0.

07
16

6 
1.

4 
0.

25
26

4 
(0

.2
70

) 
0.

21
32

4 
(0

.1
90

) 
0.

12
47

9 
(0

.1
21

) 
0.

13
15

9 
(0

.1
27

) 
0.

25
05

7 
(0

.2
56

) 
0.

24
92

3 
(0

.2
50

) 
0.

21
32

6 
0.

25
02

3 



T
ab

le
 4

. 
R

ea
ct

iv
e 

co
ll

is
io

n 
pr

ob
ab

il
it

ie
s 

P 
..

..
 

fo
r 

co
ll

in
ea

r 
H

 +
 H

2 a
. 

1s
t 

li
ne

: 
pr

es
en

t 
re

su
lt

s,
 2

nd
 l

in
e:

 R
os

en
th

al
 a

nd
 G

o
rd

o
n

 [
36

],
 3

rd
 l

in
e:

 D
ie

st
le

r 
[3

8]
 

N
gr

ia
 

E
to

 , 
(e

V
) 

Po
o 

Po
, 

P
lo

 
P

u
 

P0
2 

P2
0 

P
,2

 
e2

, 
P2

2 

o 
66

01
 

0.
48

26
 

0.
37

6 
0.

37
2 

0.
36

6 
66

01
 

0.
53

76
 

0.
91

8 
0.

91
6 

0.
91

0 
66

01
 

0.
84

26
 

0.
85

2 
0.

00
30

3 
0.

00
31

2 
0.

00
02

0 
0.

85
8 

0.
00

23
8 

0.
00

23
9 

0.
00

01
5 

0,
85

3 
0.

00
3 

0,
00

3 
0.

00
02

0 

10
25

1 
1.

29
66

 
0.

56
2 

0,
11

0 
0,

11
0 

0.
15

0 
0.

3 
(-

3
) 

0.
24

 (
-3

) 
0.

22
 (

-3
) 

0.
27

 (
-3

) 
<

0.
1 

(-
4

) 
0.

66
3 

0.
07

0 
0.

07
0 

0.
21

4 
0.

95
 (

-4
) 

0.
14

 (
-3

) 
0.

47
 (

-4
) 

0,
44

 (
-4

) 
0.

32
 (

-7
) 

10
25

1 
1.

44
66

 
0.

13
5 

0.
21

6 
0.

21
7 

0.
22

5 
0.

10
0 

0.
10

1 
0.

13
8 

0.
13

8 
0.

53
0 

0.
15

3 
0.

23
3 

0.
23

6 
0,

19
8 

0.
08

6 
0.

08
8 

0.
12

0 
0.

12
1 

0.
53

0 

10
25

1 
1.

54
66

 
0.

12
0 

0.
15

3 
0.

15
3 

0.
20

2 
0.

12
6 

0.
12

5 
0.

17
9 

0.
17

8 
0.

39
6 

0.
13

5 
0,

16
7 

0.
16

9 
0.

20
0 

0.
12

4 
0.

12
7 

0.
15

0 
0.

15
2 

0.
39

7 

10
25

1 
1.

64
66

 
0.

07
8 

0.
10

3 
0.

10
3 

0.
21

0 
0.

13
7 

0.
13

7 
0.

18
6 

0,
18

6 
0.

18
5 

0,
06

9 
0.

12
5 

0.
12

6 
0.

22
7 

0.
17

9 
0.

18
2 

0.
14

1 
0.

14
1 

0.
13

7 

66
01

 
1.

64
66

 
0.

08
2 

0,
10

5 
0,

10
6 

0.
21

0 
0.

14
1 

0,
14

1 
0.

18
4 

0,
18

5 
0.

18
5 

a 
V

al
ue

s 
in

 p
ar

en
th

es
es

 a
re

 p
ow

er
s 

of
 1

0 



440 

Table 5. Reactive probabilities P . . . .  for collinear H + H 2 with five open channels 

R. Jaquet 

Ngri d E (eV) Poo e l l  P22 P33 /944 

10 251 2.1 0.02711 0.07668 0.18616 0.09484 0.0 
2.2 0.02385 0.18293 0.06564 0.47164 0.00042 
2.3 0.01580 0.06601 0.12057 0.12356 0.54358 
2.4 0.00995 0.05451 0.12609 0.08476 0.48478 

14 701 2.4 0.00925 0.05245 0.12414 0.08578 0.48333 

For convergence tests we also present results for different numbers of grid points. 
The agreement is less impressive than in Table 3. Small differences may partly 
result from slightly different conversion factors and mass units. The present results 
are very near to convergence (except for the highest energies). 

In Table 5 reaction probabilities for five vibrational states are given for several 
energies. There is good agreement with the curves shown in the paper of Kupper- 
mann [25] except for P44, where Kuppermann's  values are roughly 20% too small. 

5.3. The symmetric reactions H + DH, D + HD and H + Mul l  

We now investigate the capability of FEM for some symmetric isotopic reactions, 
namely H + DH, D + HD and H + Mull .  The present reaction probability p~ac 
of HDH and DHD can be found in excellent agreement with the results of 
Kuppermann [25] which can be seen in Figs. 5 and 6. The calculations were 
performed with 6601 grid points where convergent results can be expected for 
energies for at least up to 1 eV. In addition we list in Table 6 the total reaction 
probabilities P ~  for different reactions including H D H  and DHD. The results 
in Table 6 are compared with the early work of Wu et al. [31]. In most cases our 
results are accurate within a few tenth of a percent. 

0.8 

Fe~2C. Po-o 0 . 6 ~  
0.4 

0.2 

0.17 0.0 0.5 1.0 
5 E o [eV] 

Fig. 5. The reaction probability p~ac for the 
collinear exchange reaction H + DH (v = 0)-~ 
HD ( v ' = 0 ) + H  on the PK surface. E 0 is the 
initial relative translational energy. : results 
of Kuppermann [25], O: present results 
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1.0 

03 

p r o Q f f .  

0-0 
0.6 

0.z, 

0.2 

Fig. 6. The reaction probability P ~ ~  for the / 
collinear exchange reaction D + HD (v = 0)-~ 0.0 ) 
DH ( v ' = 0 ) + D  on the PK surface. E o is the 
initial relative translational energy. : results 0.0 
of Kuppermann [25], a :  present results 6 

1rE 

0.5 1.0 

Eo[eV] 

Table 6. Sum of  reaction probabilities E,, P~2~ for different isotope reactions. The first numbers are 
present results and the values in parentheses are from Wu et al. [31] a 

E 
(kcal/mol) D + H  2 H + I )  2 H + D H  D + H D  

7.0 0.0 0.0 0.0 
8.0 10 -5 (0.0) 0.00004 (0.0) 0.00002 (0.0) 
9.0 0.002 (0.001) 0.002 (0.002) 0.001 (0.001) 

10.0 0.059 (0.057) 0.047 (0.046) 0.027 (0.026) 
11.0 0.469 (0.465) 0.341 (0,344) 0.237 (0.231) 
12.0 0.879 (0.877) 0.770 (0,775) 0.690 (0.865)* 
13.0 0.968 (0.967) 0.940 (0.938) 0.916 (0.921) 
14.0 0.978 (0.976) 0.979 (0.978) 0.982 (0.980) 
15.0 0.970 (0.969) 0.986 (0.986) 0.995 (0.995) 
16.0 0.951 (0.950) 0.966 (0.964) 0.999 (0.999) 
17.0 0.914 (0.912) 0.839 (0.838) 1.0 (1.0) 
18.0 0.818 (0.809) 0.769 (0.771) 0.997 (0.997) 
19.0 0.906 (0.907) 0.894 (0.894) 0.945 (0.944) 
20.0 0.942 (0.936) 0.962 (0.960) 0.982 (0.981) 
21.0 0.820 (0.814) 0.951 (0.950) 0.986 (0.986) 
22.0 0.715 (0.702) 0.918 (0.914) 0.984 (0.985) 
23.0 0.649 (0.631) 0.808 (0.801) 0.980 (0.979) 
24.0 0.591 (0.574) 0.665 (0.660) 0.968 (0.968) 
25.0 0.548 (0.535) 0.697 (0.697) 0.945 (0.943) 

0.0 
0.0001 (0.0) 
0.009 (0.010) 
0.214 (0.222) 
0.832 (0.843) 
0.996 (0.997) 
0.993 (0.991) 
0.966 (0.966) 
0.923 (0.928) 
0.862 (0.861) 
0.717 (0.710) 
0.610 (0.643)* 
0.687 (0.685) 
0.563 (0.655)* 
0.470 (0.477) 
0.408 (0.416) 
0.365 (0.375) 
0.339 (0.476)* 
0.308 (0.321) 

Values with an asterisk may be misprints or are near a resonance 



442 R. Jaquet 

The calculations are comparably easy for large skew angles, i.e. comparable 
masses. In the case of  H + M u H  we get a small skew angle a =26.1 ~ and a 
correspondingly large integration area in mass-weighted coordinates. Therefore 
we expect less accurate results for a given number  of grid points. It was necessary 
to shift the asymptotic boundary further out to larger atom-molecule distances 
than used for H + H2, because the transition probabilities were more sensitive to 
the position of the boundary (Z1 ~ 2.0 - 13.0ao; for Z1 = 13.0ao: Z2 ~ 0.15 - 1.53ao). 
First comparison with the calculations of Manz and RSmelt (MR) [40] seemed 
to be disappointing. The small mass differences (MR: mn = 1.008 amu, m~au = 
1 ~mH, present calc.: mH = 1837.109 emu = 1.00797 amu, m~u = 207.768 emu = 
1/8.842 mH) lead to large differences for some individual reaction transition 
probabilities, e.g. p~ao, as can be seen in Fig. 7. In order to compare with the 
MR values we used mH = 1.00797 amu and 1 mMu = ~mH. The results (Table 7 and 
Fig. 7) are now in good agreement with MR [40, 28]. Between the two calculations 
small differences in masses and conversion factors still may exist, resulting in 
some discrepancies, namely ~10% for P~'o ~. For energies E > 2.6 eV the results 
with 32 851 grid points are nearly convergent. This number of grid points seems 
to be very large. I f  one exploits symmetry, only half of the points would be 
needed. Using polynomials of  higher degree a considerable reduction of points 
can be expected. The question still remains, if the use of  the internal coordinates 
with nondiagonal terms in the kinetic energy would lead to convergent results 
at a reduced number  of  grid points. 

5.4. The asymmetric reactions M u + D 2 ,  H + D 2 ,  D + H 2  

As in the case of the symmetric reactions in Sect. 5.3, we used only N- -6601  
grid points for these asymmetric reactions, and expect no problems up to the 
first four open channels. 

Results are given for M u + D 2  (Fig. 8) and for M u + D 2 ,  H + D 2  and D + H 2  
(Tables 6, 8). For these systems the integration area of  the mass-weighted coordin- 

1 

1.Ol 
2reac. 
D~R 

0.5 

0.0 

In=;/ 
L/ 

t 
0.5 1.0 1,5 2.0 2.5 30 

E[eV] 

Fig. 7. The reaction probabilities P~g~, for the collinear reaction H +  Mull (n)  ~ HMu(n')  + H (n = 
n' = 0, 1, 2) on the PK-surface as function of total energy E. E is measured relative to the bottom of 
the reactant potential energy well. : M R  [40] results, O: present results (rn H = 1837.109 emu, 
mMu=l /9  rnH). +: results from calculations with slightly different masses (mH= 1837.109emu, 
mM~ = 1/8.842 rnH) but with equivalent accuracy 
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1.0 

0.8 

P e a t .  Ps 
0.6 

0.4 

0.2 

o.o 

0.6 0,9 1.2 1.5 

E [eV ]  

Fig. 8. C o l l i n e a r  in i t i a l - s ta te -se lec ted  reac-  

t ion  p robab i l i t i e s  U , , ~  for  t he  M u +  D 2 reac-  

t ion  as f u n c t i o n  o f  to ta l  e n e r g y  E, E is 

m e a s u r e d  re la t ive  to the  b o t t o m  o f  the  reac -  

t an t  po ten t i a l  ene rgy  well.  : resul ts  o f  

B o n d i  et al. [41] ,  @: p r e sen t  resul ts  

ates is only slightly larger than for H + H2. Therefore we expect the same accuracy 
as for H + H~. 

Some results for M u +  D2 are given in Table 8 and are compared with the work 
of Bondi et al. [41] in Fig. 8. For H + D 2  and D + H 2  the pres.ent results are 
compared with the work of Wu et al. [31] in Table 6. The agreement is excellent. 

6. Discussion and conclusion 

As has been shown before by Askar et al. [9] FEM is a very useful and accurate 
method for solving reactive scattering problems in 2 dimensions. The idea of 
using piecewise local functions in scattering theory is not new [23, 36, 43]. It is 
mostly used for the propagation of the wavefunction, but with FEM we can 
calculate the whole scattering wavefunction in one step. This global type of the 

Tab le  8. R e a c t i o n  p robab i l i t i e s  fo r  co l l inea r  M u  + D 2 (v = 0, 1, 2, 3) ~ M u D ( v  = 0) + D a 

E (ev) pin (MUD)  Poo . . . .  (MUD)  10 20 30 

0.7 0.938 0 .034 0.030 - -  - -  

0.75 0.336 0.278 0.386 - -  - -  

0.8 0.052 0.333 0.616 - -  - -  

0.85 0.013 0.303 0.685 - -  - -  

1.0 0 .004 0.207 0.712 0.076 - -  

1.1 0.003 0.128 0.575 0.295 - -  

1.2 0.002 0.091 0.486 0.420 - -  
1.3 0.003 0.075 0.432 0.484 0.005 

1.4 0.003 0.041 0.268 0.516 0.172 
1.5 0.001 0.029 0.216 0.510 0.243 

a N u m b e r  o f  g r id  po in t s :  N = 6601 
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FEM procedure allows to obtain realistic estimates of the accuracy and conver- 
gence properties. 

Our aim is the systematic investigation of the usefulness of FEM for dynamical 
problems, and for electronic structure calculations, too. In the work we tried to 
show that by using a modern vector computer like the Cyber 205 mathematical 
two-dimensional scattering problems can be solved in reasonable times. We gave 
a first overview of our work, where we calculated reaction probabilities for the 
hydrogen isotope reactions including symmetric and asymmetric configurations 
and including up to five open vibrational states for each channel. 

In the present calculations we did not make use of the symmetry of the potential 
surface, so that one can directly compare symmetric and asymmetric cases. For 
the local wavefunctions in FEM a simple approximation was used: the quadratic 
polynomial. The inclusion of symmetry and of polynomials of higher degree with 
explicit derivatives will cut down the number of necessary grid points consider- 
ably. We hope that this results in a large decrease of computing time for solving 
the linear equations. 

The FEM code for the present calculations is still not optimal compared to the 
standards in engineering science today. The small bandwidth of the matrix 
resulting from optimal numbering of the nodes can be improved and the discretiz- 
ation into elements has  not been optimally adapted to the chosen physical 
problem. We think that these improvements will probably result into a further 
reduction of computer time making FEM more competitive in comparison to 
conventional basis set expansion methods. There may still be problems left, where 
conventional methods seem to be more useful (e.g. resonances). But it is not 
clear whether these problems are relevant in higher dimensions. 

The general complexity will increase for higher dimensions. We have started to 
develop a FEM code for three dimensions. 3D investigations are done by Kupper- 
mann and Hipes [12] and Linderberg et al. [11] for H + H2 by propagating the 
two-dimensional eigenfunctions (calculated by FEM) in the conventional way 
(i.e. R-matrix). Recently a new quantum mechanical approach using L 2 basis 
sets for solving 3D reactive scattering problems (D+H2 (v = 1)) has been pub- 
lished [46]. 

We are going to do similar calculations with FEM in full three dimensions, which 
seems to be a feasible project on the basis of the present experience. 

Appendix A: The Cholesky and conjugate gradient method for solving the linear 
equation A x  = b 

(a) Cholesky method [5t), 44] 

In the Cholesky method, which is normally used for symmetric and positive 
definite matrices, first a symmetric decomposition into a lower-triangular matrix 
L is performed; 

A = L L  r. 
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Then, using the process of forth-and-back substitution one solves the equation 

L L r x - b  =0 .  

In textbooks [5b] the Cholesky method is described only for positive definite 
matrices. We now give the algorithm as it is used in our FEM program for a 
symmetrical nonpositive definite band matrix (m =semibandwidth) with the 
convention that Lpq is zero if q<~0 or q > p :  

A q = 0  f o r ( l i - j l ) > m  

L u =  ; j = i - m , . . . , i - 1 ; i = l , . . . , n  

/O f o r i - j > m  

i--1 

Mi Aii ~, 2 : - -  L i k S k ,  i = 1 , . , . ,  n 
k = l  

Si = sign (M~) 

L ,  = ~ �9 Si. 

In case of a nonpositive definite matrix diagonal matrix-elements Lz~ will become 
imaginary, leading to a complex matrix L. This problem is handled by storing 
the information whether L~ is real or imaginary in a bit vector S~. 

In general m is much smaller than n. There are then approximately n • (m + 1) x 
(m + 2) additions, n x (m + 1) • (m + 2) multiplications and n square roots, signs 
and absolute values in the decomposition, Only the summation part can be 
"vectorized" (QSSDOT), because the algorithm is recursive. 

The solution of the set of equations A x  = b can be performed in two steps 

(1) L c =  b, (2) L T x =  c 

where we have introduced c = LTx: 

( )/ ci = bi - ~ LkiekSk Lii; i = 1, . . . ,  n 
k = i - m  

Xi : C i -  ~ L i k X k  Lii; i = n ,  . . . , 1.  
k=i-l-1 

Approximately 4n x (m + 1) multiplications and 2n • (m + 1) additions are in- 
volved in a solution and any number of right-hand sides can be processed when 
L is known. 

In the Fortran code the elements for L and c are stored on A and x. In case of 
very large matrices, where I /O for matrices A and L has to be included, the 
necessary working space for A and L need not be larger than m • (m + 1). 

At the moment we get a rate of roughly 20-50 MFLOP for the Cholesky method, 
which is fairly good. 
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( b )  C o n j u g a t e  g r a d i e n t  m e t h o d  

For the refinement of the Cholesky-solution and for problems with good starting 
vectors, we use the conjugate gradient (CG) method as an iterative method, first 
described by Hestenes and Stiefel [45, 5b]. The algorithm can be described in 
short as follows: starting with an initial guess Xo two sequences of vectors 
xo,  x l ,  x2 ,  �9 �9 �9 and to ,  r l ,  r2,  . �9  (residual vector: rk = A x k  + b )  are generated itera- 
tively by a special procedure, explained in detail in [5b]. This method can be 
vectorized optimally if we do not use sparse matrix techniques. The time consum- 
ing step in each iteration is the product A x Xk. For the band matrix A we use 
the diagonal vector storage, which allows us to calculate the product A x Xk with 
vector operations of the length n, especially triadic operations, which are the 
fastest on the Cyber 205. A MFLOP-rate of 2 8 0  results. In case of  small core 
memory a compact matrix A is used, leading to a less effective vectorization (see 
Table 1). 
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